redis集群方案比较

Redis常见集群实现方式

本章节为引用内容http://www.infoq.com/cn/articles/effective-ops-part-03

客户端分片

这种方案将分片工作放在业务程序端,程序代码根据预先设置的路由规则,直接对多个Redis实例进行分布式访问。这样的好处是,不依赖于第三方分布式中间件,实现方法和代码都自己掌控,可随时调整,不用担心踩到坑。
这实际上是一种静态分片技术。Redis实例的增减,都得手工调整分片程序。基于此分片机制的开源产品,现在仍不多见。
这种分片机制的性能比代理式更好(少了一个中间分发环节)。但缺点是升级麻烦,对研发人员的个人依赖性强——需要有较强的程序开发能力做后盾。如果主力程序员离职,可能新的负责人,会选择重写一遍。
所以,这种方式下,可运维性较差。出现故障,定位和解决都得研发和运维配合着解决,故障时间变长。
这种方案,难以进行标准化运维,不太适合中小公司(除非有足够的DevOPS)

代理分片

这种机制下,一般会选用第三方代理程序(而不是自己研发),因为后端有多个Redis实例,所以这类程序又称为分布式中间件。
这样的好处是,业务程序不用关心后端Redis实例,运维起来也方便。虽然会因此带来些性能损耗,但对于Redis这种内存读写型应用,相对而言是能容忍的。
这是我们推荐的集群实现方案。像基于该机制的开源产品Twemproxy,便是其中代表之一,应用非常广泛。

Redis Cluster

在这种机制下,没有中心节点(和代理模式的重要不同之处)。所以,一切开心和不开心的事情,都将基于此而展开。
Redis Cluster将所有Key映射到16384个Slot中,集群中每个Redis实例负责一部分,业务程序通过集成的Redis Cluster客户端进行操作。客户端可以向任一实例发出请求,如果所需数据不在该实例中,则该实例引导客户端自动去对应实例读写数据。
Redis Cluster的成员管理(节点名称、IP、端口、状态、角色)等,都通过节点之间两两通讯,定期交换并更新。
由此可见,这是一种非常“重”的方案。已经不是Redis单实例的“简单、可依赖”了。可能这也是延期多年之后,才近期发布的原因之一。
这令人想起一段历史。因为Memcache不支持持久化,所以有人写了一个Membase,后来改名叫Couchbase,说是支持Auto Rebalance,好几年了,至今都没多少家公司在使用。
这是个令人忧心忡忡的方案。为解决仲裁等集群管理的问题,Oracle RAC还会使用存储设备的一块空间。而Redis Cluster,是一种完全的去中心化……
本方案目前不推荐使用,从了解的情况来看,线上业务的实际应用也并不多见。

Twemproxy

Twemproxy是一种代理分片机制,由Twitter开源。Twemproxy作为代理,可接受来自多个程序的访问,按照路由规则,转发给后台的各个Redis服务器,再原路返回。
这个方案顺理成章地解决了单个Redis实例承载能力的问题。当然,Twemproxy本身也是单点,需要用Keepalived做高可用方案。
我想很多人都应该感谢Twemproxy,这么些年来,应用范围最广、稳定性最高、最久经考验的分布式中间件,应该就是它了。只是,他还有诸多不方便之处。
Twemproxy最大的痛点在于,无法平滑地扩容/缩容。
这样导致运维同学非常痛苦:业务量突增,需增加Redis服务器;业务量萎缩,需要减少Redis服务器。但对Twemproxy而言,基本上都很难操作(那是一种锥心的、纠结的痛……)。
或者说,Twemproxy更加像服务器端静态sharding。有时为了规避业务量突增导致的扩容需求,甚至被迫新开一个基于Twemproxy的Redis集群。
Twemproxy另一个痛点是,运维不友好,甚至没有控制面板

Codis

Codis由豌豆荚于2014年11月开源,基于Go和C开发,是近期涌现的、国人开发的优秀开源软件之一。现已广泛用于豌豆荚的各种Redis业务场景(已得到豌豆荚@刘奇同学的确认,呵呵)。
从3个月的各种压力测试来看,稳定性符合高效运维的要求。性能更是改善很多,最初比Twemproxy慢20%;现在比Twemproxy快近100%(条件:多实例,一般Value长度)。

体系架构

Codis引入了Group的概念,每个Group包括1个Redis Master及至少1个Redis Slave,这是和Twemproxy的区别之一。这样做的好处是,如果当前Master有问题,则运维人员可通过Dashboard“自助式”切换到Slave,而不需要小心翼翼地修改程序配置文件。
为支持数据热迁移(Auto Rebalance),出品方修改了Redis Server源码,并称之为Codis Server。
Codis采用预先分片(Pre-Sharding)机制,事先规定好了,分成1024个slots(也就是说,最多能支持后端1024个Codis Server),这些路由信息保存在ZooKeeper中。

ZooKeeper还维护Codis Server Group信息,并提供分布式锁等服务。

使用技巧,注意事项

1)无缝迁移Twemproxy
出品方贴心地准备了Codis-port工具。通过它,可以实时地同步 Twemproxy 底下的 Redis 数据到你的 Codis 集群。同步完成后,只需修改一下程序配置文件,将 Twemproxy 的地址改成 Codis 的地址即可。是的,只需要做这么多。
2)支持Java程序的HA
Codis提供一个Java客户端,并称之为Jodis。这样,如果单个Codis Proxy宕掉,Jodis自动发现,并自动规避之,使得业务不受影响。
3)支持Pipeline
Pipeline使得客户端可以发出一批请求,并一次性获得这批请求的返回结果。这提升了Codis的想象空间。
4)Codis不负责主从同步
也就是说, Codis仅负责维护当前Redis Server列表,由运维人员自己去保证主从数据的一致性。这样的好处是,没把Codis搞得那么重。也是我们敢于放手在线上环境中上线的原因之一。

坚持原创技术分享,您的支持将鼓励我继续创作!.